injective dimension
- injective dimension的基本解释
-
-
内射维数
- 相似词
- 更多 网络例句 与injective dimension相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Finally, it investigate QF-ring with right gpm-injective, and obtain the following theorem:Theorem The following statements are equivalent:(1) R is quasi-Frobeniusean ring:(2) R is right noetherian, left pm-injective ring, right pm-injective ring;(3) R is right noetherian, left pm-injective ring, right GP-injective ring;(4) R is right noetherian, left gpm-injective ring, right gpm-injective ring;(5) R is right noetherian, right gpm-injective ring and each right minimal ideal is right annihilator.
最后用右gpm-内射对QF环进行研究,得到了如下定理:定理下列条件等价:(1) R是quasi-Frobeniusean环;(2) R是右Noether,左pm-内射环,右pm-内射环:(3) R是右Noether,左pm-内射环,右GP-内射环;(4) R是右Noether,左gpm-内射环,右gpm-内射环;(5) R是右Noether,右gpm-内射环且每个极小右理想是右零化子。
-
In this paper, we study syzygies of injective resolvent s and cosyzygies of injective resolutions, and probe the relationship of injective resolvent s and injective resolutions, and then prove that if R is a Noetherian ring with id≤n, then every left R-module has injective dimension at most n or ∞.
研究了内射预解式的合冲模与内射分解式的上合冲模,并探讨了内射预解式与内射分解式之间的联系,证明了如果环R是Noether环且id≤n,则每个左R-模的内射维数小于等于n或者为∞。
-
The injective rings play an important role in the study of rings and categories of modules . First , we introduce the notion of ann-injective rings and CT-injective modules .Second,we make an inquiry into a series of their properties.Third,we give the definition of homological dimension of CT-injective modules.At last,we give the definition of FGT rings which is the extension of cogenerator rings.
本文对环与模范畴中一重要的模类—内射模进行了延拓,引入了ann -自内射环以及CT -内射模的概念,探讨了它们一系列的性质,并定义了CT -内射模的同调维数,最后对余生成子环进行推广得到了FGT -环,讨论了它与CT -内射环的关系以及它的一些性质。
- 更多网络解释 与injective dimension相关的网络解释 [注:此内容来源于网络,仅供参考]
-
injective dimension:单射维数
injection 单射 | injective dimension 单射维数 | injective envelope 单射包络
-
injective dimension:内射维数
injective cochain complex 内射上链复形 | injective dimension 内射维数 | injective function 内射的函数
-
left injective dimension:左内射维数
左幺元 left identity element | 左内射维数 left injective dimension | 左内积 left inner product
-
right injective dimension:右内射维数
right identity element 右幺元 | right injective dimension 右内射维数 | right inner product 右内积
-
injective dimension of modules:模的内射维数
模的内射包|injective hull of a module | 模的内射维数|injective dimension of modules | 模的拟内射包|quasi-injective hull of a module