英语人>网络例句>代数 相关的搜索结果
网络例句

代数

与 代数 相关的网络例句 [注:此内容来源于网络,仅供参考]

Arad and Blau proved that an abelian table algebra can be viewed as a group algebra of some abelian group G. Chapter 3 of this paper gives the structural theorem of abelian table algebras by defining a group structure in table basis. Furthermore, the structure of elementary abelian table algebras is discussed using the number of composition series of table algebras.

Arad和Blau证明了abel表代数等价于某个有限生成abel群G的群代数,受此启发本文第3节通过定义表基的一个群结构给出了abel表代数的结构定理,并从合成列数目的角度对初等abel表代数进行了细致刻画。

Secondly, it has drawn out the pointed YD-Lie algebras definition, in the category of Yetter-Drinfeld modules, let Z be a torsion-free abelian group, if we have a symmetric braiding c, for each G-graded algebra V over the G-graded space, a new Lie superalgebra with an operation _c satisfying an actions, then we can obtain a new Lie superalgebra, this paper to call it pointed YD-Lie algebra.

其次引出了点YD-李代数,即:在Yetter-Drinfeld模范畴中,对任意的一个G-分次代数Z(G为无挠群V,引入对称辫子c后,在V内作_c运算,即可得到一种新的李代数(本文称之为点YD-李代数)。

Content of the course consists of:(1)Basic Theories of Polynomials ;(2)Linear Algebra: topics on basic matrix theory, determinant, system of linear equations, vector space, linear transformation, eigenvalue problems, inner product and Euclidean space , and quadratic form etc.;(3) Analytic Geometry: topics on algebraic operations of vectors, coordinates, lines and planes, curves and curved surfaces, etc.

学习本课程后,学生应学会用线性空间与线性变换的观点处理包括线性代数方程组在内的有关理论与实际问题;学会熟练地运用矩阵工具;本课程还学习基本的多项式知识和空间解析几何的基本知识。课程内容包括几个主要部分:(1)多项式代数;(2)线性代数:矩阵,行列式,线性代数方程组,向量空间与线性变换理论,特征值问题,欧氏空间理论,二次型等;(3)解析几何:几何空间向量代数,通过建立坐标系以及借助向量方法研究空间平面与直线及点﹑线﹑面的相互关系,借助曲面方程研究空间曲面,尤其是柱面,锥面,旋转面和二次曲面以及曲面的交线等。

In chapter 4, Based on the orthogonality relations and duality of C-algebras, we study the decompositions of C-algebras, and give a Fourier inversion formula on C-algebras, which generalizes the Fourier inversion formula on the center of a finite group algebra over complex. As an application, we characterize the integral closure of C-algebras over the ring of integers, and show a necessary and sufficitient condition for elements of C-algbras being algbraic integral over integers.

第四章 我们应用C-代数的正交性及对偶性刻画了C-代数的一个分解,给出了C-代数上这个完全分解的Fourier反演公式,从而推广了Z分解的Fourier反演公式;作为Fourier反演公式的一个应用,我们刻画了Z在整数环Z上的整闭包,进一步我们研究了C-代数在整数环Z上的整闭包,给出了C-代数在整数环Z上为整元的一个充要条件。

Using the concept of Boolean functions and combinatorics theory comprehensively, we investigate the construction on annihilators of Boolean functions and the algebraic immunity of symmetric Boolean functions in cryptography:Firstly, we introduce two methods of constructing the annihilators of Boolean functions, Construction I makes annihilators based on the minor term expression of Boolean function, meanwhile we get a way to judge whether a Boolean function has low degree annihilators by feature matrix. In Construction II, we use the subfunctions to construct annihilators, we also apply Construction II to LILI-128 and Toyocrypt, and the attacking complexity is reduced greatly. We study the algebraic immunitiy of (5,1,3,12) rotation symmetric staturated best functions and a type of constructed functions, then we prove that a new class of functions are invariants of algebraic attacks, and this property is generalized in the end.Secondly, we present a construction on symmetric annihilators of symmetric Boolean functions.

本文主要利用布尔函数的相关概念并结合组合论的相关知识,对密码学中布尔函数的零化子构造问题以及对称布尔函数代数免疫性进行了研究,主要包括以下两方面的内容:首先,给出两种布尔函数零化子的构造方法,构造Ⅰ利用布尔函数的小项表示构造零化子,得到求布尔函数f代数次数≤d的零化子的算法,同时得到通过布尔函数的特征矩阵判断零化子的存在性:构造Ⅱ利用布尔函数退化后的子函数构造零化子,将此构造方法应用于LILI-128,Toyocrypt等流密码体制中,使得攻击的复杂度大大降低;通过研究(5,1,3,12)旋转对称饱和最优函数的代数免疫和一类构造函数的代数免疫,证明了一类函数为代数攻击不变量,并对此性质作了进一步推广。

Some other conditions which the implicative operator of a Implication Algebra should satisfied in a logic system are given. The relations between MV-Algebra and Distributive Implication Algebra, Implication Algebra with condition are gained.

对于偏序集上蕴涵代数中的蕴涵算子引入了一些逻辑条件,得到了偏序集上具有不同条件的蕴涵代数与MV-代数之间的关系,给出了偏序集上蕴涵代数与MV代数之间的几个等价定理。

The solvable Lie algebra is corresponding to a cascade decomposition of the system and the semisimple Lie algebra is corresponding to a qasi-parallel decomposition such that the system has a parallel form of a cascade decomposition and a qasi-parallel decomposition.

任一李代数都可分解为一可解李代数与一半单李代数的半直和,可解李代数对应于系统的级联分解,半单李代数对应的是系统的准平行分解,将二者合并起来,就得到一般李群下的非线性系统的结构分解,这是一级联形式与一准平行形式的并联形式分解。

We introduce some concepts, such as yon Neumann algebras, factor von Neumann algebras, nest algebras and so on, and give some well-known theorems that we will use in this paper. In Chapter 2, we put our attention on linear maps that preserving zero Jordan triple product on nest subalgebrasof factor yon Neumann algebras.

第二章首先对因子von Neumann代数中套子代数上保Jordan三重零积的线性映射进行了研究,证明了从因子von Neumann代数中套子代数到任一有单位元的Banach代数的保Jordan三重零积的单位线性双射是Jordan同构。

U(4) algebra is very suitable to describe triatomic molecules, for their Fermi interaction can be described by using nondiagonal matrix elements of Majorana operator.

在研究多原子分子的李代数方法中,尤以U(4)代数适合描述三原子分子,这不仅仅是因为U(4)代数完全描述的是三维情形,物理图象更加清晰直观,而且,U(4)代数的Fermi相互作用可以由Majorana算子的非对角元素给出,不需要再引进另外一个代数

Explicitly, they are consist of three classes: If H is semisimple, then H k* for some finite group; If H is not semisimple and the characteristic of k is zero, then H is isomorphic the dual of the cross product between one so called Andruskiewitsch-Schneider algebra and a group algebra; If H is not semisimple and the characteristic of k is not zero, then H is isomorphic the dual of the cross product between one special algebra and a group algebra.

具体地讲,它们共(来源:5fbfA02BC论文网www.abclunwen.com)分三类:①如果H是半单的,则H同构与一个群代数的对偶;②如果H是非半单的并且基础域的特征是0的话,则H同构一个所谓Andruskiewitsch-Schneider代数与一个群代数交差积的对偶;③如果H是非半单的并且基础域的特征不是0的话,则H同构于某个特定代数与一个群代数交差积的对偶。

第4/100页 首页 < 1 2 3 4 5 6 7 8 9 ... > 尾页
推荐网络例句

I will endeavour to find you some assistance.

我尽力帮你找人帮忙。

At first I only know bruck is the idol of American younglings, afterwards I returned back to Taiwan ,even in Beijing last year ,I saw her poster everywhere, I was so surprised at her charm.

起初我只晓得布鲁克雷德丝是美国少男少女崇拜的偶像,后来回台湾,甚至去年在北京,居然也四处看见她的海报,才惊讶她的魅力之大。

Ah may dee:You are chinese living in a democratic country.

你是居住在民主国家的中国人吧。