英语人>词典>汉英 : 键角 的英文翻译,例句
键角 的英文翻译、例句

键角

词组短语
bond angle
更多网络例句与键角相关的网络例句 [注:此内容来源于网络,仅供参考]

Moreover, it is found that analysis on bond length, torsion angle and strain energy can help to study the localization and the size of a knot in the tensile process.

键长、键角、两面角和能量的分布及其在拉伸过程中的变化能够帮助确定结在链中的定位,分析结的尺寸。

According to this construction, ethylene is predicted to have an H-C-H bond angle of 120°, the measured angle of 117.5°being reasonably close to this value.

按照这种结构,预计乙烯的键角为120°,测得的键角是117.5°,相当接近与该值。

Higher substrate temperature can lead to decrease of bond angle disorder of C bonds; It can also promote the outdiffusion of the implanted C atoms and the formation of C-C bondings.

较高的基片温度可以导致C键键角无序化程度的降低;也可以促进注入的C原子向表面的扩散及C-C键的形成。

Bond and angle types are assigned based on (1) atom types,(2) bond lengths or bond angles in the QM optimised geometry and (3) matching force constants derived from the Hessian matrix.

键和键角类型标记,依据(1)原子类型(2)量子优化几何学中的键长或者键角(3)源于 Hessian 矩阵的合适的力常数。

Then the experiment of the thickness and deviation dependent shows the continue networks model is more seemlier, in which the amorphous lattice is the same of a single crystal, but its bond distance and bond angle have a little change.

而我们的池厚与分散度关系的实验已说明了厚池中键长键角不归一,当小球标准差为8.4%时,键长键角的变化可以用连续网络的非晶模型来描述,此模型的非晶结构的骨架与单晶相同,但键长键角有小量的无规性。

The results show that the calculated cell parameters are in agreement with the experimental ones. The interactions between Li—N and Al—N are strong ionic bonds in Li3AlN2. The interaction between N and H is strong covalent bond and the interaction between Li and N is strong ionic bond in LiNH2. The calculated reaction enthalpies are 23.7 and 55.3 kJ/mol, respectively, which are in agreement with the experimental ones.

结果表明:Li3AlN2的Li—N、Al—N键主要为离子键,LiNH2的N—H键主要为共价键,Li—N键主要为离子键;298 K时贮氢反应的反应焓计算值分别为23.7和55.3 kJ/mol,与实验值均符合得较好;反应中各固态、气态物质的晶胞的结构优化后的晶格常数、键长与键角等与相应的实验值均符合较好。

On the basis of Raman and FTIR spectra research on melt structure and water solubility mechanism in albite glasses, we can make the following conclusions:(1) Higher pressure (1bar-2. 0GPa) can lead to below frequency region (50-650cm〓) shift to higher frequency and become narrower, and result in high frequency region (850-1300cm〓) move to lower wave number and become narrower at the same time. These are consistent with the decrease of average T-O-T angle and distribution scope of bond angles (0). In addition, the intensity of 580cm〓 band decrease with increase of pressure and the changes are obvious while pressure is in the range of 0.8-1. 0GPa. And these result from the"collapse"of the planar three membered -containing rings within the glass structure.

通过对高温高压下钠长石熔体结构及水在钠长石熔体中溶解机制的Raman和FTIR光谱实验研究,可以得出以下结论:(1)随着压力升高(1bar-2.0GPa)NaAlSi〓O〓熔体玻璃Raman光谱的低频区(50-650cm〓)不断变窄并向高频方向移动,同时高频区(850-1300cm〓)不断变窄且向低频区方向移动,这表明随着压力升高T-O-T键角不断减小,并且分布范围变窄,T-O-T键角这种变化从而可使T-O键的力常数减小,导致键强减弱;另外,580cm〓谱峰强度随着压力升高不断减弱,并在0.8-1.0GPa时最为显著,这是由于在0.8-1.0GPa时包含的平面三元环结构的"垮塌"造成的。

In addition, the changes of molecular geometry, atomic natural charge and IR spectra of the reaction system during the crucial step of O to attack H showed that the rupture of C—H bond and the formation of O—H bond were concerted stepwise. Obvious changes of atomic natural charge happened to atoms C(1), H(11), O(28), O(29) and N(27). The bond lengths and bond angles related to these atoms were also varied greatly.

NO2中O进攻1-H决速反应过程中,分子几何、原子自然电荷及IR光谱变化表明, C—H键的断裂和N—H键的形成是一个协同过程;参与新键形成和旧键断裂原子C(1), H(11), O(28), O(29)和N(27)的原子自然电荷及与其相关的键长、键角有明显的变化。

According to the H NMRstudy, it was found that the protons on the cyclopentadienyl ring of 〓 were not splitted, but when one proton on the cyclopentadienylring was substituted by methyl, that is in〓 complexes, thefour protons on the ring were splitted into four groups,the 〓 between the onesignal and the others is large, the total splitting is over 2ppm. The splittings werealso affected by the halides linked with the titanium, they increase according to theorder of CI, Br, I. By the study of the 〓 Sn NMR, it is found that the chemicalshifts of 〓 are present in low field. It is assume that the large space strain causesthe angles of the tin linked with ligands deviate from the normal tetrahedral anglesresults low field shift for 〓Sn. And by MS study,there were no molecular ions for 〓 complexes in the spectra. However, for 〓 when X=CI,Br,NCO and Ar is tolyl or phenyl group,there were molecular ions,but theirabundances were very small,and no that for the iodide was found.

钛上的卤素对茂环氢的裂分也有影响,依〓,Br,I顺序,卤素对茂环氢的裂分依次加大;通过对〓的研究发现,以上这些化合物〓的化学位移都出现在低场,认为大的空间张力造成的锡的键角偏离正常的锡的四面体键角是造成〓化学位移出现在低场的原因;对这些化合物质谱的研究发现,〓系列化合物得不到分子离子峰,而〓系列的化合物,当X=〓,NCO和苯环上不带取代基或只带甲基时,则出现分子离子峰,但丰度很低,而相应的碘化物和其它化合物则没出现分子离子峰。

the title compound was synthesized and its structure was studied in theory.the schiff base compound was synthesized by condensation of paeonol with furylfurylamine,then it was deoxidized by sodium borohydried.the energies,bound lengths,bound angles,the net charges of main atom and contributive percents of frontier orbital in the title compound have been calculated by software hyperchem 7.0 in half experience method.the yield rate of title compound was 65.6%.the result of calculation showed that the most of the bond lengths and angles in the system were in the the normal range,negative charge mainly concentrate on o1,o2,o3 and n1.the title compound behaves as quadridentate ligand.

目的合成标题化合物并对其结构进行了理论研究。方法以丹皮酚和糠胺为原料合成席夫碱,经硼氢化钠还原得标题化合物;使用hyperchem7.0程序,用半经验方法计算了化合物分子中能量分布、主要键长、键角以及主要原子的净电荷分布和前言轨道分布。结果标题化合物,收率65.6%;计算结果分析表明,分子中主要原子之间的键长、键角基本在正常的范围内;负电荷主要集中于o1,o2,o3和n1上。

更多网络解释与键角相关的网络解释 [注:此内容来源于网络,仅供参考]

bond angle:键角

共用电子在混成轨道分布的情形决定了化学键的强度、键长(bond length)和键角(bond angle). 由於电子在混成轨道中最安稳,所以要把它们拆散,也就是要打断已形成之化学键,则需外加能量(加热!)才行. 要加多少能量才能把已成化学键的两个原子分开,

bond angle:键角(与同一原子连接的两个键之间的角度)

boiling point 沸点 | bond angle 键角(与同一原子连接的两个键之间的角度) | bond length 键长(分子中两个原子核间的平衡距离)

bond angle:键角本文来自:博研联盟论坛

371. bond energy 键能 本文来自:博研联盟论坛 | 372. bond angle 键角本文来自:博研联盟论坛 | 373. carbohydrate 碳水化合物 本文来自:博研联盟论坛

bond energy:键能 本文来自:博研联盟论坛

370. bond oength 键长本文来自:博研联盟论坛 | 371. bond energy 键能 本文来自:博研联盟论坛 | 372. bond angle 键角本文来自:博研联盟论坛

bond length:键长

共用电子在混成轨道分布的情形决定了化学键的强度、键长(bond length)和键角(bond angle). 由於电子在混成轨道中最安稳,所以要把它们拆散,也就是要打断已形成之化学键,则需外加能量(加热!)才行. 要加多少能量才能把已成化学键的两个原子分开,

bond length:键长(分子中两个原子核间的平衡距离)

bond angle 键角(与同一原子连接的两个键之间的角度) | bond length 键长(分子中两个原子核间的平衡距离) | bonding pair 成键电子对

Num lock:(数字锁定键)

只要将数字锁定键(num lock)打开即可解决. 2.输入法切换有误. 网上交易系统中的数字框支持半角字符,不支持全角字符,而一般情况下英文输入法是半角的,而中文输入法是全角的,此时检查一下输入法的全半角状态,

Bond Enthalpies:键能

96. Bond Angles 键角 | 97. Bond Enthalpies 键能 | 98. Bond Polarity 键矩

Bond Enthalpies:键能本文来自:博研联盟论坛

96. Bond Angles 键角本文来自:博研联盟论坛 | 97. Bond Enthalpies 键能本文来自:博研联盟论坛 | 98. Bond Polarity 键矩本文来自:博研联盟论坛

Bond Enthalpies:键能HHC化学化工资源导航

96. Bond Angles 键角HHC化学化工资源导航 | 97. Bond Enthalpies 键能HHC化学化工资源导航 | 98. Bond Polarity 键矩HHC化学化工资源导航