英语人>词典>汉英 : 能量变换 的英文翻译,例句
能量变换 的英文翻译、例句

能量变换

词组短语
energy conversion
更多网络例句与能量变换相关的网络例句 [注:此内容来源于网络,仅供参考]

The data can be picked off by a decoding circuit added to the power-conversion circuit on high-voltage terminal.

在高压侧,通过在能量变换电路中增加一个解码电路将控制信号提取出来。

On the basis of wavelet transform and S transform,through popularizing basic wavelet, the basic wavelet containing 4 kinds of unknown parameters (amplitude, energy attenuation rate, energy-delay time and apparent frequency ) was constructed, realizing generalized S transform.

在小波变换和S变换基础上,通过对基本小波的推广,构建含有四类待定参数(振幅、能量衰减率、能量延迟时间及视频率)的基本小波,实现广义S变换。

In view of crosswell and 3D VSP layout, we use high resolution Radon transform based on Cauchy distribution to perform Radon transform for hole data. In this process, we study discrete dip overlay operator, improve damping factor that affects Radon energy convergence in order to let Radon energy converge, 6 resolve leggy in Radon data, and decouple smoothing effect among each energy group, we use Cauchy distribution to regularize data, let energy focus on one point, and improve Radon resolution. All these work well in wavefield separation. Finally, by inversion results and model trial, we verify the feasibility and stability of this method.

在Radon变换原理分析基础上,采用基于柯西分布的高分辨率线性Radon变换对井孔数据进行Radon变换,其间通过对离散倾角叠加算子求取的研究,及对影响Radon能量收敛的重要参数阻尼因子算法的改进,使数据在Radon域以能量团的形式呈现,得到很好的收敛效果,基本解决了Radon域数据的一定程度的拖尾现象,消除了各能量团之间的平滑效应,采用柯西分布来规则化数据,提高了Radon域的分辨率,Radon域能量也收敛到一个点上,有利于上下行波或纵横波波场分离。

In view of crosswell and 3D VSP layout, we use high resolution Radon transform based on Cauchy distribution to perform Radon transform for hole data. In this process, we study discrete dip overlay operator, improve damping factor that affects Radon energy convergence in order to let Radon energy converge, 6 resolve leggy in Radon data, and decouple smoothing effect among each energy group, we use Cauchy distribution to regularize data, let energy focus on one point, and improve Radon resolution. All these work well in wavefield separation.

在Radon变换原理分析基础上,采用基于柯西分布的高分辨率线性Radon变换对井孔数据进行Radon变换,其间通过对离散倾角叠加算子求取的研究,及对影响Radon能量收敛的重要参数阻尼因子算法的改进,使数据在Radon域以能量团的形式呈现,得到很好的收敛效果,基本解决了Radon域数据的一定程度的拖尾现象,消除了各能量团之间的平滑效应,采用柯西分布来规则化数据,提高了Radon域的分辨率,Radon域能量也收敛到一个点上,有利于上下行波或纵横波波场分离。

It is shown that many of the existing integral transforms (including their logically equivalents) such as chirplet transform, dispersion transform, wavelet transform, chirp-Fourier transform, short-time Fourier transform, Gabor transform, Fourier transform, cosine transform, sine transform, Hartley transform, Laplace transform, z transform, Mellin transform, Hilbert transform, autocorrelation function, cross-correlation function, and the energy and mean of a signal, can each be considered as a special case of the FMmlet transform with specific parameters. In fact, an inventory of subspaces of FMmlet transform runs into countless numbers. The subspaces mentioned above are merely a few among a zoo of subspaces. They are essentially obtained by cutting the transform space of FMmlet transform at different positions, and can be likened to the computed tomography in medical diagnosis. Through these subspaces we actually see different slices or profiles of the FMmlet transform.

将现有诸多变换置于统一的 FMmlet 变换中加以审视,发现 chirplet 变换、频散变换、小波变换、 chirp-Fourier 变换、短时 Fourier 变换、 Gabor 变换、 Fourier 变换、余弦变换、正弦变换、 Hartley 变换、 Laplace 变换、变换、 Mellin 变换、 Hilbert 变换、自相关函数、互相关函数、能量和均值等,均为 FMmlet 变换在其参数取特定值时的特例;上述诸变换之间的差别,主要在于变换空间的维数有别,以及在不同空间维上取值的不同;这些变换有如医学诊断中的 CT,均由压缩 FMmlet 变换域空间所致,可以说我们通过这些变换看到的,是 FMmlet 变换的不同剖面。

In general, 85% of the forming energy transforms into heat.

总之, 85%形成的能量变换成热。

The computational complexity has been reduced about 5 times over against the original one. Moreover, the interpolation and quantization processing of CW is more reasonable; 2. A secondary power normalization algorithm is proposed in this dissertation. This normalization algorithm ensures that the energy sum of SEW and REW is 1. So, the energy ratio of SEW and REW can be achieved only by using SEW energy. This ratio is applied in REW quantization and CW composition; 3. For more efficient quantization for Slowly Evolving Waveform magnitude, Rapidly Evolving Waveform magnitude and power parameters, firstly, by applying the Equivalent Rectangular Bandwidth theory, classifiable multi-codebooks method, analysis-by-synthesis approach and so on, a predictive AbS multi-codebooks SEW magnitude quantization scheme is proposed. In the scheme, pitch information is exploited to determine which codebook is searched; secondly, for REW magnitude quantization, this dissertation proposed a DCT-matrix multi-codebooks quantization scheme. The classification in muti-codebooks is based on pitch and quantized SEW power. The multi-codebooks structure may offer more the information in quantization and solve the problem of the bit requirement limits in quantization by consuming some extra storage space; Furthermore, for the switch quantization of CW gain, a new classified parameter is proposed.

本文的主要贡献体现为如下几方面:一、为了减少WI模型的计算复杂度,提出了基于快速傅立叶变换、三次B样条插值和周期延拓技术的特征波形(Characteristic Waveform,CW)表示和对齐的快速算法,与原方法相比,计算量下降到原方法的1/5,同时也使得CW在插值和量化时更合理;二、为了严格保证SEW与REW的能量和为1,提出了一种特征波形的二次功率归一化算法,仅需要SEW能量就可以算出二者的能量比,并可应用到后续的REW的分类量化和CW合成中;三、为了对慢渐变波形(Slowly Evolving Waveform,SEW)幅度、快渐变波形(Rapidly Evolving Waveform,REW)幅度和特征波形功率进行有效量化,本文首先采用临界频带理论、分析合成技术、感觉加权技术以及预测式矢量量化技术,提出了一种基于基音周期分类的SEW分析合成预测式多码书量化方法;其次,本文根据基音和量化后SEW的功率信息对REW幅度进行分类,提出了一种基于离散余弦变换的REW矩阵多码书量化方法。

This paper presents an effective multi-sensor image registration method combining high-pass energy transformation and feature point matching.

针对多源传感器图像的特点,提出了一种结合高通能量变换与角点匹配的图像配准方法。

Topics include diffusion, membranes, water relations, ion transport, photochemistry, bioenergetics of energy conversion, photosynthesis, environmental influences on plant temperature, and gas exchange for leaves and whole plants.

题目包括扩散,膜,水关系,离子运输,光化学,能量变换,光合作用,对植物温度的环境影响的生物 Living beings 能学,并且气体交换叶子和整套设备

Professor Geroges Zissis: The French director of the lab, the professor of Paul Sabatier University, the member of CAPT administrating committee and the member of electron and electrical equipment association. He is also the chairman of European Union, European Co-operation in the Field of Scientific and Technical research Action 529"Efficient Lighting for the 21st Century".

Geroges Zissis教授:实验室法方代表,法国Paul Sabatier 大学教授,法国国家科研中心等离子体与能量变换实验室《LAPLACE》副主任,TEEE电子电器协会成员,欧盟科学技术领域欧洲合作529活动(COST-529)&21世纪绿色照明&项目主持人。

更多网络解释与能量变换相关的网络解释 [注:此内容来源于网络,仅供参考]

energy conversion device:能量转换设备

1439. energy conversion 能量变换,能量转换 | 1440. energy conversion device 能量转换设备 | 1441. energy conversion efficiency 能量转换效率

Energy conversion:能量变换;能量转换

energy consumer 电力用户 | energy conversion 能量变换;能量转换 | energy converter 能量变换

energy converter:能量变换器

energy 能 | energy converter 能量变换器 | energy efficiency 能量效率

energy crisis:能量危机

1443. energy converter 能量变换器 | 1444. energy crisis 能量危机 | 1445. energy current 有效电流

Deco:能量直接变换过程

declutch 摘开离合器 | DECO 能量直接变换过程 | decoagulant 反絮凝剂

direct energy conversion:能量直接转变,直接日射能变换

direct electromotive force | 直流电动势 | direct energy conversion | 能量直接转变,直接日射能变换 | direct extrusion | 直接挤压

energy conversion factor:能量转换系数

1441. energy conversion efficiency 能量转换效率 | 1442. energy conversion factor 能量转换系数 | 1443. energy converter 能量变换

energy transfer:能量传输

energy storing device 储能装置 | energy transfer 能量传输 | energy transformation 能量变换

photovoltaic converter:光伏变换器,光电能量变换器

photovoltaic cell 光生伏打电池 | photovoltaic converter 光伏变换器,光电能量变换器 | photovoltaic effect 光生伏打效应

photovoltaic converter:光电变换器,光电能量变换器,光伏变换器

photovoltaic cell photronic photocell 光生伏打电池 | photovoltaic converter 光电变换器,光电能量变换器,光伏变换器 | photovoltaic detection 光生伏打探测