英语人>词典>汉英 : 发光能量 的英文翻译,例句
发光能量 的英文翻译、例句

发光能量

词组短语
luminous energy
更多网络例句与发光能量相关的网络例句 [注:此内容来源于网络,仅供参考]

They can be classificated to two kinds. One kind is build by photomultiplier; another kind is build by MCP. The mechanism of delayed luminescence is discussed with subradiation. A photon count system is built. To proof the biophoton is a kind of ultra weak photon stream originate from exothermic reaction, and primarily discuss the relationship between the delayed luminescence and proteins activity, we chose microphyllous banyan leave , ficus elastica leave, gingkgo leave, Chinese fan palm leave, and cinnamomum camphora leave as biological samples. The ultra weak photon emission from normal biosamples, and proteins inactivated biosample were measured separately with photon count system. The results showed that the delayed luminescence of biosamples have

在研究过程中,作者从辐射陷获的角度讨论了延迟发光的产生机制,对生物光子的生物化学起源与相干场起源的统一性进行了探索;自行搭建了单光子探测系统;测量了小叶榕树、印度橡树,银杏树,蒲葵树香和樟树等多种植物叶片样品的延迟发光,获得了大量实验数据;为了证明生物光子是一种起源于放热化学反应能量释放的微弱光子流,并初步探讨生物蛋白活性与延迟发光衰减之间的关系,测量了正常生物样品、生物蛋白灭活样品的延迟发光,同时测量了多种不含蛋白质的无机化学体系作为比对,实验结果和实验数据的回归分析表明:弱光子发射来源于放热的化学反应,延迟发光的强度与衰减时间与生物蛋白活性密切相关。

There is no visible light dispersion in the glass and it can take the place of traditional rare earth fluorescent screen in high energy radiography applications. For its spatial resolution will not be greatly reduced when its thickness increases in a certain range, a thicker glass can be used to reach a higher DQE.

针对特殊用途开发了一种新型掺Tb3+硅酸盐发光玻璃转换屏,可用于30 MeV的γ光子的成像探测;在低能X光(100 keV)作用下的空间分辨能力与301型发光玻璃相当,而在能量高达12 MeV的X光的照射下,其空间分辨能力不低于1.5 lp/mm,发光效率约为301型发光玻璃的3倍。

Luciferin,as the light-carrier substance or the energy-transfer substance,plays an indispensability role on the luminescent system of luciferase in the biology illuminant.

在生物发光体内,荧光素作为直接释放光子的物质和能量的传递物质在荧光素酶发光体系中发挥着不可或缺的作用。

Energy transfer between these two centers would result in appearance of long lasting phosphorescence.

而整个过程主要涉及两个中心,即发光中心和陷阱中心,它们之间的能量传递是产生余辉发光的主要原因。

Pyronine B adheres to on the surface of CdS and prevents CdS aggregating, which leads to the decrease of fluorescence quantum yield of CdS. Fluorescence resonance energy transfer happens from CdS to Rhodamine B, Butyl rhodamine B and Rhodamine 6G, respectively. There is a higher FRET efficiency between CdS and Neutral red with the value being 0.282. Moreover, coupling reaction between -NH_2 of Neutral red and -COOH of CdS -TGA leads to red shift of CdS fluorescence spectrum. The reaction also occurs between Safranine T and CdS. At the same time, the Fluorescence of ST is quenched by forming ST -CdS ground state complex. Chapter 6, CdS QDs modified by chitosan and polyethyleneimine can be quenched by Cu~(2+). According to the experimental result, we develop the novel sensor for Cu~(2+).

研究结果,吡啰红与CdS之间作用形式是染料聚集在CdS的表面使得CdS不易聚集,但同时也降低了CdS的发光的量子效率;罗丹明B、罗丹明6G、丁基罗丹明B均与CdS之间存在能量转移,位阻效应使得能量转移效率最高的BRhB的相对荧光强度增大最小;中性红与CdS的能量转移效率更高,同时推测可能使CdS-TGA上的-COOH与部分NR的-NH_2发生偶联导致粒子变大而发生荧光光谱的红移;番红花红与CdS是相互荧光猝灭,可能是ST的-NH_2与CdS-TGA上的-COOH发生偶联使得纳米粒子变大以及二者形成基态复合物的共同作用的影响。

We propose a new mechanism of ASFC, which based on energy transfer among the centers within the inhomogeneously broadened spectral profile. We discuss it in two situations: small energy mismatch and large energy mismatch. The dependence of relative cooling efficiency on excitation photon energy and temperature is also discussed in evaluating the new mechanism.

提出了荧光光谱的非均匀线形内不同发光中心的能量传递产生荧光制冷效应的理论,分别对小能量失配的传递过程和大能量失配的传递过程进行了研究,认为在一定的条件下这两种过程都可以产生荧光制冷效应,并给出了相对制冷效率。

PL spectra indicate that the emission bands at 515 and 542 nm correspond to the 2H(subscript 11/2)→4I(subscript 15/2) and 4S(subscript 3/2)→4I(subscript 15/2) transitions of Er(superscript 3+), respectively. In the samples, the cerium dopant exists as Ce(superscript 3+) and Ce(superscript 4+). Ce(superscript 3+) sensitizes Er(superscript 3+) and enhances the luminescence intensity of the doped nanorods remarkably and energy transfer from Ce(superscript 3+)→Er(superscript 3+) was observed.

对发光机理的初步研究表明:发光分别对应于Er(上标 3+)的2H(下标 11/2)→4I(下标 15/2),4S(下标 3/2)→4I(下标 15/2)跃迁,铈离子以Ce(上标 3+)和Ce(上标 4+)两种形式存在于体系中,Ce(上标 3+)对Er(上标 3+)起敏化作用,可以显著增强β-BBO:Er(上标 3+)/Ce(上标 3+)/Ce(上标 4+)纳米棒的发光强度,存在Ce(上标 3+)→Er(上标 3+)的能量传递过程。

We note from the further studies that in the crystals, which sharing the similar crystal structures and coordinational environments, the magnitude of the Stokes shift of the luminescence of the dopant ion is in line with the average covalency of the replaced lattice site. This is because that the nature of Stokes shift is the energy transfer from the luminescent ion to the host lattice. The value of this energy is determined by the frequency of the host lattice in which the frequency is controlled by the chemical bond characters.

更深入的研究发现,在晶体结构和中心离子配位环境非常相似的系列晶体中,掺杂离子发射光的Stokes位移值与其所取代格位的平均共价性成正比的关系,这是由于Stokes位移的本质是发光离子在发光过程中向基质以光波辐射的形式传递能量,这一能量的大小是由基质的振动频率决定的,而基质的化学键性质恰恰决定着基质的振动频率。

Further picosecond PL studies on dendronized PFs show that the fluorene-based emission in dilute solution follows a single exponential decay, whereas those in thin film decayed in a multi-phase manner and the lifetime prolongs with the generation of dendronization. These observations are discussed in terms of dispersive transport happening between adjacent chains in film. The dispersive relaxation can be controlled by site isolation of bulky dendrons. Our results prove that dendronization is highly effective in controlling the inter-chain interactions of fluorene-based polymers.

不同代数树枝化聚芴的时间分辨荧光动力学研究结果表明,溶液状态下的发光为单指数衰减行为,而薄膜状态下的发光为多指数衰减行为,且其发光寿命随树枝化代数增加而增长,表明树枝化基团抑制了邻近的聚芴分子之间能量传递所致的激发态能量耗散。

Electrochemical properties, photoluminescence and electroluminescence properties of a series of copolymer with different content are studied detailedly. The results indicated there is strong energy transfer between blue- and green-yellow light emission units, so only single blue- or green-yellow emission peak appears in the PL and EL spectra and white light-emission cannot get.

对一系列不同含量的绿-黄光链段共聚物的电化学性能、光致发光和电致发光性能进行了研究,发现蓝光链段与绿-黄光链段间由于存在强的能量转移,导致共聚物膜的光致发光和电致发光光谱只出现单一的蓝-绿光或绿-黄光,而不能复合出白光。

更多网络解释与发光能量相关的网络解释 [注:此内容来源于网络,仅供参考]

bioluminescence:生物发光

2.生物发光(bioluminescence)典型例子为萤火虫发光. 反应底物为萤火虫光素(fireflyluciferin),在荧光素酶(luciferase)的催化下利用ATP产能,生成激发态的氧化荧光素(oxyluciferin),后者在回复到基态时多余的能量以光子形式放出. 反应式如下:

black body radiation:黑体幅射

依据黑体幅射(black body radiation)的研究,任何温度的物体热辐射产生的光(称为电磁波),其能量与辐射出的波长成反比. 所以物体温度越高,它辐射出的电磁波能量越高,而发光的波长越短,亦即偏向蓝光;反之辐射出的电磁波能量越低,而发光的波长越长,

chemiluminescence:化学发光

化学发光(Chemiluminescence)指的是能量由化学反应所提供的,也就是说在一个化学反应中释放出光子信号. 能够产生化学发光现象的化学反应是非常少的. 化学发光最好的例子如下:

luciferin:萤光素

原来在这些萤火虫的发光器里头含有一种叫做萤光素 (luciferin) 的含磷化学物质. 这种萤光素在发光酵素的催化下会进行一连串的生化反应,而光是这些复杂生化反应下的产物. 由於在反应过程中大部份的能量都用来发光,只有2-10%的能量转化为热能,

luminescence:发光

"发光"(Luminescence)就是发射不具热量的光线. "萤光"(Fluorescence)是当某些物质受到紫外线能量的激励时所发射的光. 当这种激励移去时,就停止发光. "磷光"(Phosphorescence)是在激励根源移去以后仍然继续发射光线.

photoluminescence:光致发光

光致发光包括光吸收、能量传递、光发射等过程,这些过程与材料结构、成分及环境原子排列有关,光致发光技术[简介]光致发光(photoluminescence) 光致发光(photoluminescence) 材料通过吸收光子产生激发态的辐射跃迁.

thermoluminescence:热释光

热释光(thermoluminescence)是指固体在受辐射作用后积蓄的能量在加热过程中以光的形式释放出来的现象,又称热释发光或加热发光,其发光强度与温度的关系叫热释发光曲线.

dopant:杂物

而在阳极的选择上,则必需是一个高功函数又可透光的材质,这样的选择并不多,所以ITO(indium在后续的研究当中发现,OLED可藉由在发光层中掺杂一不等浓度的掺杂物(dopant),使得主发光体(host)的能量得以转移至掺杂物上而改变原本主发光体的光色以及发光的效率,

luminous energy:可视光能量

luminous bacteria 发光细菌 | luminous energy 可视光能量 | luminous fungi 发光菌类

luminous energy:发光能量

luminous flame <发>光焰 | luminous energy 发光能量 | luminous efficiency 发光效率