presentation space
- presentation space的基本解释
-
-
[计]表示空间, 呈现空间
- 相似词
- 更多 网络例句 与presentation space相关的网络例句 [注:此内容来源于网络,仅供参考]
-
But in the condition when the first project is characters and the end project is pictures , the reaction time is faster when the end project is also characters , along with that the transformation speed of imagery presentation is faster than that of proposition presentation, the reason may be that imagery presentation can stimulate proposition presentation automatically, the transformation is self-moving processing and independent from will, but it is not self-motive but controlled processing and will needs when the proposition presentation transforms into imagery presentation.
但在首项目是字的时候,尾项目是图的条件下被试反应时快于尾项目是字的条件下,又表明图像表征比命题表征的转换速度快,原因可能是由于图像表征能够自动激活命题表征,其转化是自动加工的、几乎不信赖于意志努力的,而命题表征转化为图像表征却不是自动的,而是控制加工的、需要意志努力的过程。
-
It solves the problem that the unitary contour presentation can not correctly extract face contour in a face image which suffers from scale, rotation etc. The definition of the internal and external energy function is provided. At the same time, the global matching algorithm and local matching algorithm is given. The experiment shows that this presentation and the accompanying matching algorithm can be used to extract the face contour very well. So the image segmentation can be implemented by using it.②By analyzing the recognition principle of PCA method, we can conclude that the face images coming from different surrounding consist of different face image space. This is the essential reason that makes the generality of PCA method worse. Also, we give a measurement means to measure the distance from different face image space, so we can analyze face image space more conveniently.③We also construct various scale models and rotation pose models to detect the scale and rotating angle of face image to be recognized. The experiment results show that the detecting precision is very high. So it is good for face image feature extraction and face image representation.④Similarly, we construct local feature models of face image and utilize them to detect the local feature of face image. At the same time, we put forward a novel face image local feature detection algorithm, locating step by step. The experiment results show that this method can accurately detect the location of local face feature in a image.⑤A novel face image presentation model, dual attribute graph , is put forward. Firstly, it utilizes attribute graph to present the face image, then exact the local principal component coefficient and Gabor transform coefficient of thc pixels which corresponds to the nodes of the graph as the attribute of the nodes. This representation fully makes use of the statistical characteristic of the local face feature and utilizes Gabor transform to present the topographical structure of face image. So DAG has more general property.⑥Based on the DAG presentation, we give a DAG matching function and matching algorithm. During the design of the function and algorithm, the noise factor, e. g., lighting, scale and rotation pose are considered and tried to be eliminated. So the algorithm can give more general property.⑦A general face image recognition system is implemented. The experiment show the system can get better recognition performance under the noise surrounding of lighting, scale and rotation pose.
本文在上述研究的基础上,取得了如下主要研究成果:①构造了一个通用的人脸轮廓模型表示,解决了由于人脸图象尺度、旋转等因素而使得仅用单一轮廓表示无法正确提取人脸轮廓的问题,并给出了模型内、外能函数的定义,同时给出了模型的全局与局部匹配算法,实验表明,使用这种表示形式以及匹配算法,能够较好地提取人脸图象的轮廓,可实际用于人脸图象的分割;②深入分析了PCA方法的识别机制,得出不同成象条件下的人脸图象构成不同的人脸图象空间的结论,同时指出这也是造成PCA方法通用性较差的本质原因,并给出了不同人脸空间距离的一种度量方法,使用该度量方法能够直观地对人脸图象空间进行分析;③构造了各种尺度模板、旋转姿势模板以用于探测待识人脸图象的尺度、旋转角度,实验结果表明,探测精确度很高,从而有利于人脸图象特征提取,以及图象的有效表示;④构造了人脸图象的各局部特征模板,用于人脸图象局部特征的探测;同时提出了一种新的人脸图象局部特征探测法---逐步求精定位法,实验结果表明,使用这种方法能够精确地得到人脸图象各局部特征的位置;⑤提出了一种新的人脸图象表示法---双属性图表示法;利用属性图来表示人脸图象,并提取图节点对应图象位置的局部主成分特征系数以及Gabor变换系数作为图节点的属性,这种表示方法充分利用了人脸图象的局部特征的统计特性,并且使用Gabor变换来反映人脸图象的拓扑结构,从而使得双属性图表示法具有较强的通用性;⑥在双属性图表示的基础上,给出双属性图匹配函数及匹配算法,在函数及算法设计过程中,考虑并解决了光照、尺度、旋转姿势变化等因素对人脸图象识别的影响,使得匹配算法具有较强的通用性;⑦设计并实现了一个通用的人脸图象识别系统,实验结果表明,该系统在图象光照、尺度、旋转姿势情况下,得到了较好的识别效果。
-
For example, U-space is uniformly regular and which makes it has fixed point property, U-space is uniformly non-square and thus super-reflexive, uniformly convex space and uniformly smooth space are U-spaces, and an Banach space is an U-space iff its dual space is U-space, etc. In1990s, a lot of work had been done on U-space theory, e.g., Tingfu Wang and Donghai Ji introduced the concepts of pre U-property and nearly U-property. Under the structure of Orlicz space, they made systematic investigation of these properties, and gave the criteria for an Orlicz space to have U-property.
U-空间具有一致正规结构进而具有不动点性质;U-空间是一致非方的,进而也是超自反的;一致凸空间和一致光滑空间是U-空间;Banach 空间为U-空间的充要条件是其对偶空间为U-空间,等等。20世纪90年代,国内外学者对U-空间理论做了很多工作,王廷辅,计东海等人先后引入了准U-性质与似U-性质的概念,并在Orlicz空间框架下对有关性质进行了系统研究,完整给出了Orlicz空间具有各种U-性质的判据。
- 更多网络解释 与presentation space相关的网络解释 [注:此内容来源于网络,仅供参考]
-
Antigen presentation:抗原递呈功能
知识表示方法:Knowledge Presentation Method | 抗原递呈功能:Antigen presentation | 矛盾表现:The Presentation of Contradiction
-
presentation,cross birth:横产式
\\"臂产式\\",\\"presentation,breech\\" | \\"横产式\\",\\"presentation,cross birth\\" | \\"面产式\\",\\"presentation,face\\"
-
occiput anterior presentation:枕前位
枕后位 occiput posterior presentation | 枕前位 occiput anterior presentation | 枕横位 occiput transverse presentation