operator automorphism
- operator automorphism的基本解释
-
-
算子自同构
- 相似词
- 更多 网络例句 与operator automorphism相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Op1 + op2 The addition operator will add two numbers. op1 - op2 The subtraction operator will subtract two numbers. op1 * op2 The multiplication operator will multiply two numbers. op1 / op2 The division operator will divide two numbers. op1 % op2 The modulus operator will return the remainder of the division of two integer operands. op1 xx op2 The exponentiation operator will raise op1 to the power of op2.++op1 The pre-increpment operator will increase the value of op1 first, then assign it. op1++ The post-increment operator will increase the value of op1 after it is assigned.--op1 The pre-decrement operator will decrease the value of op1 before it is assigned. op1-- The post-decrement operator will decrease the value of op1 after it is assigned.
op1 + op2 对两个数值做加法操作 op1 - op2 对两个数值做减法操作 op1 * op2 对两个数值做乘法操作 op1 / op2 对两个数值做除法操作 op1 % op2 求两个整型数值的余数 op1 xx op2 求幂操作:求 op1 的 op2 次幂++op1 前加操作: op1 的值先增加,然后将值赋给自身 op1++后加操作: op1 的值先赋给自身,再增加值--op1 前减操作: op1 的值先减少,然后将值赋给自身 op1—后减操作: op1 的值先赋给自身,再减少值
-
Moreover, some subgroups of Aut are obtained, such asthe inner automorphism group, the central automorphism group, the involutional automorphism group, the first and the second extremal automorphism group.
证明了:当n=0时,Aut中每个元素都是内自同构,且Aut≌C(定理1.12)。n=1时,Aut中每个元素都是有限个内自同构,中心自同构,对合自同构和第一类外自同构的乘积(定理1.13)。
-
In chapter 5, local derivations and local automorphisms of nest subalgebras in von Neumann algebras and local higher cohomology -local 2-cocycles are studied. It is proved that every weakly continuous local derivation, respectively, every weakly local automorphism, of nest subalgebra of a factor von Neumann algebra is a derivation, respectively, an automorphism. Every norm continuous local derivation, respectively, every norm local automorphism, of the nest subalgebra associated to a countable nest in a factor von Neumann algebra is a derivation, respectively, an automorphism. Moreover, it is answered Larson's question. Finally, it is shown that every local 2-cocycle of any von Neumann algebra is a 2-cocycle.
第五章研究von Neumann代数中套子代数的局部导子和局部同构以及von Neumann代数的高维局部映射—局部2-上循环,证明了因子von Neumann代数中套子代数的每一个局部强连续导子和局部强连续同构分别是导子和同构;可数套所对应的套子代数的每一个有界局部导子和有界局部同构分别是导子和同构;同时,部分回答了Larson所提的问题;最后,得到von Neumann代数的每一个局部2-上循环是2-上循环。
- 更多网络解释 与operator automorphism相关的网络解释 [注:此内容来源于网络,仅供参考]
-
operator automorphism:算子同构
operator algebra 算子代数 | operator automorphism 算子同构 | operator domain 算子域
-
analytic automorphism operator:解析自同构算子
解析子群|analytic subgroup, connected Lie subgroup | 解析自同构算子|analytic automorphism operator | 解耦|decoupling