英语人>词典>汉英 : 区溶法 的英文翻译,例句
区溶法 的英文翻译、例句

区溶法

词组短语
zone melting
更多网络例句与区溶法相关的网络例句 [注:此内容来源于网络,仅供参考]

The geology research of carbonate reservoirs in Ordovician of Tahe oilfield showed that many large dissolved vugs and fractures were developed. The spread of the reservoir take on a very heterogeneous state. And the typical fractured-vuggy reservoirs was formed. According to the combination of the various spaces, the formation was divided into vuggy formation, fractured-vuggy formation and fractured formation. The research showed that development of the vug is relevant to the its position on the structure, the fractures, the water surface and the weathering surface. Multi-phase charge and recharge of the oil in the reservoirs resulted in the complexity of the fluid distribution. So the"Bottle Model"was brought forward to explain the movement of the water-oil contact. The special storage space and the complex fluid distribution lead to the unstability of the production and the complexity of the water cut. In order to explain the characteristic of the fracture-vug unit was brought forward and the basic principle and method of the partition of the fracture-vug unit was formed. The classification and evaluation of the units were performed according the reserve and energy. Based on the research of geology characteristic and the fluid flow in the reservoir the comprehensive numerical simulation plan of the fractured-vuggy reservoirs were established. Through the selection of the simulation unit, fluid flow type and parameter equivalent the triple media reservoir simulation model was established. Considering the practical application the model was resolved by the DKR decomposition conjugate grads method. Based on the fine reservoir description of Dsitrict IV of the Tahe oilfield the various space type were classified and combined together. The geology model of Unit S48 was constructed. Two typical single well model was established according to the geology and the dynamic phenomena. Finally the single well model and the Unit S48 were simulated by the triple media reservoir simulator. Via the local grid refinement and coarsening in the simulation good matchs were gained. Based on the results of the simulation the reserve distribution, percent of reserve produced in various space and the natural energy were analyzed. The fluid was storaged in the fractures and vugs mostly and more than 90% the produced oil came from the systems. The energy belonged to the active one. The results of simulation accorded with the fact and showed the validity and practicability the research and the simulator.

塔河油田奥陶系碳酸盐岩油藏的地质研究表明,其储层中发育着很多大型的溶蚀洞、缝,储层的平面展布呈现出极度的非均质性,形成了典型的缝洞型碳酸盐岩油藏,根据各种孔隙介质在储层中的组合,将储层分为了溶洞型、裂缝-溶洞型和裂缝型三类;研究表明溶洞储层的发育和构造位置、裂缝的发育、潜水面和风化面的位置等因素有关;多期充注的油气成藏模式导致了流体复杂的赋存状态,由此提出了所谓的"瓶子模型",解释生产过程中油水界面的变化;特殊的储集空间类型和流体分布特征导致油田在开发过程中表现出很大的不确定性和含水变化的复杂性,为了合理的解释油气田开发过程中的动态特征,提出了"缝洞单元"的概念,并制定了"缝洞单元"纵横向划分的基本原则和依据及划分方法,并对"缝洞单元"进行了分类和评价;基于地质特征和流体在其中流动规律的研究,提出了缝洞型碳酸盐岩油藏的数值模拟综合解决方案,通过模拟单元的选择、流动类型和参数的等效,建立了三重介质油藏三维三相数值模拟模型,采用不完全LU分解预处理共轭梯度法进行了求解;在塔河油田4区精细油藏描述的基础上,将各种类型的孔隙空间进行了归类组合,建立了S48单元的地质模型;通过对油井生产动态进行分析研究,建立了两类和油井地质、生产动态相对应的单井模型;最后应用三重介质油藏数值模拟软件对单井模型和S48单元进行了数值模拟,通过局部加密和粗化等技术模拟流体流动规律,取得了很好的拟合效果;结合数值模拟结果,分析了各种介质中的储量分布、储量产出的百分比以及地层的能量,认为塔河油田缝洞型油藏中流体绝大多数储集于缝洞系统之中,所产出流体90%以上也来自于缝洞系统,其底水能量属于较充足的类型;模拟结果和油田实际情况符合较好,说明了地质研究和油藏数值模拟研究的正确性。

The geology research of carbonate reservoirs in Ordovician of Tahe oilfield showed that many large dissolved vugs and fractures were developed. The spread of the reservoir take on a very heterogeneous state. And the typical fractured-vuggy reservoirs was formed. According to the combination of the various spaces, the formation was divided into vuggy formation, fractured-vuggy formation and fractured formation. The research showed that development of the vug is relevant to the its position on the structure, the fractures, the water surface and the weathering surface. Multi-phase charge and recharge of the oil in the reservoirs resulted in the complexity of the fluid distribution. So the"Bottle Model"was brought forward to explain the movement of the water-oil contact. The special storage space and the complex fluid distribution lead to the unstability of the production and the complexity of the water cut. In order to explain the characteristic of the fracture-vug unit was brought forward and the basic principle and method of the partition of the fracture-vug unit was formed. The classification and evaluation of the units were performed according the reserve and energy. Based on the research of geology characteristic and the fluid flow in the reservoir the comprehensive numerical simulation plan of the fractured-vuggy reservoirs were established. Through the selection of the simulation unit, fluid flow type and parameter equivalent the triple media reservoir simulation model was established. Considering the practical application the model was resolved by the DKR decomposition conjugate grads method. Based on the fine reservoir description of Dsitrict IV of the Tahe oilfield the various space type were classified and combined together. The geology model of Unit S48 was constructed. Two typical single well model was established according to the geology and the dynamic phenomena. Finally the single well model and the Unit S48 were simulated by the triple media reservoir simulator. Via the local grid refinement and coarsening in the simulation good matchs were gained. Based on the results of the simulation the reserve distribution, percent of reserve produced in various space and the natural energy were analyzed. The fluid was storaged in the fractures and vugs mostly and more than 90% the produced oil came from the systems. The energy belonged to the active one. The results of simulation accorded with the fact and showed the validity and practicability the research and the simulator.

塔河油田奥陶系碳酸盐岩油藏的地质研究表明,其储层中发育着很多大型的溶蚀洞、缝,储层的平面展布呈现出极度的非均质性,形成了典型的缝洞型碳酸盐岩油藏,根据各种孔隙介质在储层中的组合,将储层分为了溶洞型、裂缝-溶洞型和裂缝型三类;研究表明溶洞储层的发育和构造位置、裂缝的发育、潜水面和风化面的位置等因素有关;多期充注的油气成藏模式导致了流体复杂的赋存状态,由此提出了所谓的&瓶子模型&,解释生产过程中油水界面的变化;特殊的储集空间类型和流体分布特征导致油田在开发过程中表现出很大的不确定性和含水变化的复杂性,为了合理的解释油气田开发过程中的动态特征,提出了&缝洞单元&的概念,并制定了&缝洞单元&纵横向划分的基本原则和依据及划分方法,并对&缝洞单元&进行了分类和评价;基于地质特征和流体在其中流动规律的研究,提出了缝洞型碳酸盐岩油藏的数值模拟综合解决方案,通过模拟单元的选择、流动类型和参数的等效,建立了三重介质油藏三维三相数值模拟模型,采用不完全LU分解预处理共轭梯度法进行了求解;在塔河油田4区精细油藏描述的基础上,将各种类型的孔隙空间进行了归类组合,建立了S48单元的地质模型;通过对油井生产动态进行分析研究,建立了两类和油井地质、生产动态相对应的单井模型;最后应用三重介质油藏数值模拟软件对单井模型和S48单元进行了数值模拟,通过局部加密和粗化等技术模拟流体流动规律,取得了很好的拟合效果;结合数值模拟结果,分析了各种介质中的储量分布、储量产出的百分比以及地层的能量,认为塔河油田缝洞型油藏中流体绝大多数储集于缝洞系统之中,所产出流体90%以上也来自于缝洞系统,其底水能量属于较充足的类型;模拟结果和油田实际情况符合较好,说明了地质研究和油藏数值模拟研究的正确性。

The reservoir rock types in the region of interest are grain limestone, algal limestone, cryptite, siltstone, muddy limestone and mudstone. The thesis identified as a result of changes in the deposition causing the heterogeneity in plane, and then the geological oil reserves have been calculated in accordance with the areal heterogeneity.3、Based on the data of core analysis, bore logging, array induction imaging log and FMI, porosity and permeability model were built using regression analysis. Through testing 45 rock samples, a, b, m, n value were obtained and used to calculate single-layer oil saturation value using the Archie formula. According to the theory of laterolog and inductolog, resistivity ratio and cross plot were used to identification effective thickness. Effective thickness was identified delicately in 103 wells. Based on the over work, active porosity and oil saturation was calculated accurately.4、According to observation of 100 pieces of the thin slices, cast thin slices and 383m core in three wells, the chief diagenesis in this area were compaction, cementation, denudation and cataclasis. Cementation and denudation were universally influenced active porosity this area. The intergranular pores, residual pores and secondary pores were formed in thin carbonated reservoir of lacustrine facies.5、The influence of reservoir heterogeneity to reservoir calculation was analyzed systematically using actual data. And the conclusions were as follows:①The principal reason leading to oil distribution unequal is interior structural feature of reservoir in structural hydrocarbon reservoir.

确定了由于沉积微相的变化而导致的平面非均质性,进而在平面上按照平面非均质单元计算了石油地质储量。3、利用岩心分析、常规测井曲线与阵列感应、成像测井资料相结合,分岩性利用回归分析方法建立了储层孔隙度、渗透率模型;通过对45块岩样进行岩电试验,获取了a、b、m、n值,利用阿尔奇公式计算了各单层含油饱和度值;根据侧向电阻率和感应电阻率串并联特性,利用电阻率比值法与常规交会图法相结合重建了有效厚度图版,对全区103口井目的层段进行了有效厚度精细划分,通过以上工作,准确求取了储量计算单元内有效厚度参数、有效孔隙度参数以及含油饱和度参数。4、通过对研究区3口井383m岩心观察,100余块薄片、铸体薄片镜下鉴定得出:油泉子油田上、下油砂山组储层主要成岩作用是压实作用、胶结作用、溶蚀作用和破裂作用,其中溶蚀作用、胶结作用最普遍,这两种作用对有效孔隙度影响最大,以上成岩作用形成了原生粒间孔、粒间残余孔和次生孔隙(如粒间溶孔、粒内溶孔、铸模孔、晶间孔等)为主的薄层湖相碳酸盐岩储层。5、利用实际资料,系统分析了油藏非均质对储量计算的影响,认为:①对于构造油气藏而言,油气藏构造及断裂特征是造成油气分布不均的首要原因,储集条件相同的条件下,构造高部位有利于储存油气,油气在垂向的重力分异体现了油气藏内部构造的不均一特征。

The geologists have attached much importance to the particularity of ReOs isotopic system and its application is getting popular. The author sums up and compares several kinds of sample digestion methods for ReOs isotope analysis (NiS fire assay, Carius tube digestion, high pressure asher, leaching, and water disposing), the procedures of separating Os ( conventional distillation, liquid Br2 and CCl4 or CHCl3 extraction, rapid extraction with low blank, minitype distillation) and purifying Os, improved mass spectrometry measurement of Os isotope and its application progress in the earth science research brought along the improved measuring method.

总结和对比了近年来ReOs同位素分析中样品分解的不同方法(NiS火试金法、Carius管溶样法、高压灰化消解法、浸提法、水样处理法)、Os的分离(常规蒸馏、液溴和CCl4提取、快速低本底提取、小型蒸馏)与纯化流程、Os同位素比值质谱测定法(NTIMS、ICPMS、微区原位分析)及随测定方法的改进ReOs同位素体系在地球科学研究中的应用进展。